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Abstract

Mental illnesses, such as depression, are highly prevalent and have been shown to impact an individual's physical
health. Recently, artificial intelligence (Al) methods have been introduced to assist mental health providers, including
psychiatrists and psychologists, for decision-making based on patients’ historical data (e.g., medical records, behavioral
data, social media usage, etc.). Deep learning (DL), as one of the most recent generation of Al technologies, has
demonstrated superior performance in many real-world applications ranging from computer vision to healthcare. The
goal of this study is to review existing research on applications of DL algorithms in mental health outcome research.
Specifically, we first briefly overview the state-of-the-art DL techniques. Then we review the literature relevant to DL
applications in mental health outcomes. According to the application scenarios, we categorize these relevant articles
into four groups: diagnosis and prognosis based on clinical data, analysis of genetics and genomics data for
understanding mental health conditions, vocal and visual expression data analysis for disease detection, and
estimation of risk of mental illness using social media data. Finally, we discuss challenges in using DL algorithms to
improve our understanding of mental health conditions and suggest several promising directions for their applications

in improving mental health diagnosis and treatment.

Introduction

Mental illness is a type of health condition that changes
a person’s mind, emotions, or behavior (or all three), and
has been shown to impact an individual’s physical
health®. Mental health issues including depression,
schizophrenia, attention-deficit hyperactivity disorder
(ADHD), and autism spectrum disorder (ASD), etc., are
highly prevalent today and it is estimated that around 450
million people worldwide suffer from such problems’. In
addition to adults, children and adolescents under the age
of 18 years also face the risk of mental health disorders.
Moreover, mental health illnesses have also been one of
the most serious and prevalent public health problems.
For example, depression is a leading cause of disability
and can lead to an increased risk for suicidal ideation and
suicide attempts®.
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To better understand the mental health conditions and
provide better patient care, early detection of mental health
problems is an essential step. Different from the diagnosis of
other chronic conditions that rely on laboratory tests and
measurements, mental illnesses are typically diagnosed
based on an individual’s self-report to specific ques-
tionnaires designed for the detection of specific patterns of
feelings or social interactions’. Due to the increasing
availability of data pertaining to an individual's mental
health status, artificial intelligence (AI) and machine
learning (ML) technologies are being applied to improve
our understanding of mental health conditions and have
been engaged to assist mental health providers for improved
clinical decision-making®®. As one of the latest advances in
AT and ML, deep learning (DL), which transforms the data
through layers of nonlinear computational processing units,
provides a new paradigm to effectively gain knowledge from
complex data’. In recent years, DL algorithms have
demonstrated superior performance in many data-rich
application scenarios, including healthcare®™°.
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In a previous study, Shatte et al.'' explored the appli-
cation of ML techniques in mental health. They reviewed
literature by grouping them into four main application
domains: diagnosis, prognosis, and treatment, public
health, as well as research and clinical administration. In
another study, Durstewitz et al.” explored the emerging
area of application of DL techniques in psychiatry. They
focused on DL in the studies of brain dynamics and
subjects’ behaviors, and presented the insights of
embedding the interpretable computational models into
statistical context. In contrast, this study aims to provide a
scoping review of the existing research applying DL
methodologies on the analysis of different types of data
related to mental health conditions. The reviewed articles
are organized into four main groups according to the type
of the data analyzed, including the following: (1) clinical
data, (2) genetic and genomics data, (3) vocal and visual
expression data, and (4) social media data. Finally, the
challenges the current studies faced with, as well as future
research directions towards bridging the gap between the
application of DL algorithms and patient care, are
discussed.

Deep learning overview

ML aims at developing computational algorithms or
statistical models that can automatically infer hidden
patterns from data'>'®, Recent years have witnessed an
increasing number of ML models being developed to
analyze healthcare data®. However, conventional ML
approaches require a significant amount of feature engi-
neering for optimal performance—a step that is necessary
for most application scenarios to obtain good perfor-
mance, which is usually resource- and time-consuming.

As the newest wave of ML and AI technologies, DL
approaches aim at the development of an end-to-end
mechanism that maps the input raw features directly into
the outputs through a multi-layer network structure that is
able to capture the hidden patterns within the data. In this
section, we will review several popular DL model archi-
tectures, including deep feedforward neural network
(DENN), recurrent neural network (RNN)'*, convolutional
neural network (CNN)'®, and autoencoder™®. Figure 1
provides an overview of these architectures.

Deep feedforward neural network

Artificial neural network (ANN) is proposed with the
intention of mimicking how human brain works, where
the basic element is an artificial neuron depicted in
Fig. 2a. Mathematically, an artificial neuron is a non-
linear transformation unit, which takes the weighted
summation of all inputs and feeds the result to an acti-
vation function, such as sigmoid, rectifier (i.e., rectified
linear unit [ReLU]), or hyperbolic tangent (Fig. 2b). An
ANN is composed of multiple artificial neurons with
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different connection architectures. The simplest ANN
architecture is the feedforward neural network (FNN),
which stacks the neurons layer by layer in a feedforward
manner (Fig. la), where the neurons across adjacent
layers are fully connected to each other. The first layer of
the FNN is the input layer that each unit receives one
dimension of the data vector. The last layer is the output
layer that outputs the probabilities that a subject
belonging to different classes (in classification). The
layers between the input and output layers are the hid-
den layers. A DENN usually contains multiple hidden
layers. As shown in Fig. 2a, there is a weight parameter
associated with each edge in the DFNN, which needs to
be optimized by minimizing some training loss measured
on a specific training dataset (usually through back-
propagation'”). After the optimal set of parameters are
learned, the DENN can be used to predict the target
value (e.g., class) of any testing data vectors. Therefore, a
DENN can be viewed as an end-to-end process that
transforms a specific raw data vector to its target layer by
layer. Compared with the traditional ML models, DENN
has shown superior performance in many data mining
tasks and have been introduced to the analysis of clinical
data and genetic data to predict mental health condi-
tions. We will discuss the applications of these methods
further in the Results section.

Recurrent neural network

RNNs were designed to analyze sequential data such as
natural language, speech, and video. Given an input
sequence, the RNN processes one element of the
sequence at a time by feeding to a recurrent neuron. To
encode the historical information along the sequence,
each recurrent neuron receives the input element at the
corresponding time point and the output of the neuron at
previous time stamp, and the output will also be provided
to the neuron at next time stamp (this is also where the
term “recurrent” comes from). An example RNN archi-
tecture is shown in Fig. 1b where the input is a sequence
of words (a sentence). The recurrence link (i.e., the edge
linking different neurons) enables RNN to capture the
latent semantic dependencies among words and the syn-
tax of the sentence. In recent years, different variants of
RNN, such as long short-term memory (LSTM)'® and
gated recurrent unit'® have been proposed, and the main
difference among these models is how the input is map-
ped to the output for the recurrent neuron. RNN models
have demonstrated state-of-the-art performance in var-
ious applications, especially natural language processing
(NLP; e.g., machine translation and text-based classifica-
tion); hence, they hold great premise in processing clinical
notes and social media posts to detect mental health
conditions as discussed below.
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Fig. 1 Examples of deep neural networks. a Deep feedforward neural network (DFNN). It is the basic design of DL models. Commonly, a DFNN
contains multiple hidden layers. b A recurrent neural network (RNN) is presented to process sequence data. To encode history information, each
recurrent neuron receives the input element and the state vector of the predecessor neuron, and yields a hidden state fed to the successor neuron.
For example, not only the individual information but also the dependence of the elements of the sequence x; — x, = X3 = X4 — Xs is encoded by
the RNN architecture. ¢ Convolutional neural network (CNN). Between input layer (e.g., input neuroimage) and output layer, a CNN commonly
contains three types of layers: the convolutional layer that is to generate feature maps by sliding convolutional kernels in the previous layer; the
pooling layer is used to reduce dimensionality of previous convolutional layer; and the fully connected layer is to make prediction. For the illustrative
purpose, this example only has one layer of each type; yet, a real-world CNN would have multiple convolutional and pooling layers (usually in an
interpolated manner) and one fully connected layer. d Autoencoder consists of two components: the encoder, which learns to compress the input
data into a latent representation layer by layer, whereas the decoder, inverse to the encoder, learns to reconstruct the data at the output layer. The
learned compressed representations can be fed to the downstream predictive model.

Compressed-
representaion

OO0 OO0

Convolutional neural network

CNN is a specific type of deep neural network originally
designed for image analysis'®>, where each pixel corre-
sponds to a specific input dimension describing the image.
Similar to a DFNN, CNN also maps these input image
pixels to the corresponding target (e.g., image class)
through layers of nonlinear transformations. Different

from DENN, where only fully connected layers are con-
sidered, there are typically three types of layers in a CNN:
a convolution—activation layer, a pooling layer, and a fully
connected layer (Fig. 1c). The convolution—activation
layer first convolves the entire feature map obtained from
previous layer with small two-dimensional convolution
filters. The results from each convolution filter are
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Fig. 2 Technical details of neural networks. a An illustration of basic unit of neural networks, i.e, artificial neuron. Each input x; is associated with a
weight w;. The weighted sum of all inputs Xw; is fed to a nonlinear activation function f to generate the output y; of the j-th neuron, i.e, y; = f(Zw;x).
b lllustrations of the widely used nonlinear activation function.

\.

activated through a nonlinear activation function in the
same way as a DFNN. A pooling layer reduces the size of
the feature map through sub-sampling. The fully con-
nected layer is analogous to the hidden layer in a DFNN,
where each neuron is connected to all neurons of the
previous layer. The convolution—activation layer extracts
locally invariant patterns from the feature maps. The
pooling layer effectively reduces the feature dimension-
ality to avoid model overfitting. The fully connected layer
explores the global feature interactions as in DFNNG.
Different combinations of these three types of layers
constitute different CNN architectures. Because of the
various characteristics of images such as local self-simi-
larity, compositionality, and translational and deformation
invariance, CNN has demonstrated state-of-the-art per-
formance in many computer vision tasks’. Hence, the
CNN models are promising in processing clinical images
and expression data (e.g., facial expression images) to
detect mental health conditions. We will discuss the
application of these methods in the Results section.

Autoencoder

Autoencoder is a special variant of the DFNN aimed at
learning new (usually more compact) data representa-
tions that can optimally reconstruct the original data
vectors'®*®. An autoencoder typically consists of two
components (Fig. 1d) as follows: (1) the encoder, which
learns new representations (usually with reduced
dimensionality) from the input data through a multi-
layer FNN; and (2) the decoder, which is exactly the
reverse of the encoder, reconstructs the data in their
original space from the representations derived from the
encoder. The parameters in the autoencoder are learned
through minimizing the reconstruction loss. Auto-
encoder has demonstrated the capacity of extracting
meaningful features from raw data without any

supervision information. In the studies of mental health
outcomes, the use of autoencoder has resulted in desir-
able improvement in analyzing clinical and expression
image data, which will be detailed in the Results section.

Methods

The processing and reporting of the results of this
review were guided by the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines™'. To
thoroughly review the literature, a two-step method was
used to retrieve all the studies on relevant topics. First, we
conducted a search of the computerized bibliographic
databases including PubMed and Web of Science. The
search strategy is detailed in Supplementary Appendix 1.
The literature search comprised articles published until
April 2019. Next, a snowball technique was applied to
identify additional studies. Furthermore, we manually
searched other resources, including Google Scholar, and
Institute of Electrical and Electronics Engineers (IEEE
Xplore), to find additional relevant articles.

Figure 3 presents the study selection process. All articles
were evaluated carefully and studies were excluded if: (1)
the main outcome is not a mental health condition; (2) the
model involved is not a DL algorithm; (3) full-text of the
article is not accessible; and (4) the article is written not in
English.

Results

A total of 57 articles met our eligibility criteria. Most of
the reviewed articles were published between 2014 and
2019. To clearly summarize these articles, we grouped
them into four categories according to the types of data
analyzed, including (1) clinical data, (2) genetic and
genomics data, (3) vocal and visual expression data, and
(4) social media data. Table 1 summarizes the character-
istics of these selected studies.
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Fig. 3 PRISMA flow diagram: deep learning in mental health outcome research. In total, 57 studies, in terms of clinical data analysis, genetic
data analysis, vocal and visual expression data analysis, and social media data analysis, which met our eligibility criteria, were included in this review.
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Clinical data
Neuroimages

Previous studies have shown that neuroimages can
record evidence of neuropsychiatric disorders****. Two
common types of neuroimage data analyzed in mental
health studies are functional magnetic resonance imaging
(fMRI) and structural MRI (sMRI) data. In fMRI data, the
brain activity is measured by identification of the changes
associated with blood flow, based on the fact that cerebral
blood flow and neuronal activation are coupled®*. In sMRI
data, the neurological aspect of a brain is described based
on the structural textures, which show some information
in terms of the spatial arrangements of voxel intensities in
3D. Recently, DL technologies have been demonstrated in
analyzing both fMRI and sMRI data.

One application of DL in fMRI and sMRI data is the
identification of ADHD*™®!, To learn meaningful infor-
mation from the neuroimages, CNN and deep belief
network (DBN) models were used. In particular, the CNN
models were mainly used to identify local spatial patterns

and DBN models were to obtain a deep hierarchical
representation of the neuroimages. Different patterns
were discovered between ADHDs and controls in the
prefrontal cortex and cingulated cortex. Also, several
studies analyzed sMRIs to investigate schizophrenia®*~>°,
where DENN, DBN, and autoencoder were utilized. These
studies reported abnormal patterns of cortical regions and
cortical—striatal—cerebellar circuit in the brain of schizo-
phrenia patients, especially in the frontal, temporal, par-
ietal, and insular cortices, and in some subcortical regions,
including the corpus callosum, putamen, and cerebellum.
Moreover, the use of DL in neuroimages also targeted at
addressing other mental health disorders. Geng et al.*’
proposed to use CNN and autoencoder to acquire
meaningful features from the original time series of fMRI
data for predicting depression. Two studies>*® integrated
the fMRI and sMRI data modalities to develop predictive
models for ASDs. Significant relationships between fMRI
and sMRI data were observed with regard to ASD
prediction.
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Challenges and opportunities The aforementioned
studies have demonstrated that the use of DL techniques
in analyzing neuroimages can provide evidence in terms
of mental health problems, which can be translated into
clinical practice and facilitate the diagnosis of mental
health illness. However, multiple challenges need to be
addressed to achieve this objective. First, DL architectures
generally require large data samples to train the models,
which may pose a difficulty in neuroimaging analysis
because of the lack of such data®. Second, typically the
imaging data lie in a high-dimensional space, e.g., even a
64 x 64 2D neuroimage can result in 4096 features. This
leads to the risk of overfitting by the DL models. To
address this, most existing studies reported to utilize MRI
data preprocessing tools such as Statistical Parametric
Mapping (https://www. fil.ion.ucl.ac.uk/spm/), Data Pro-
cessing Assistant for Resting-State fMRI*’, and fMRI
Preprocessing Pipeline®' to extract useful features before
feeding to the DL models. Even though an intuitive
attribute of DL is the capacity to learn meaningful features
from raw data, feature engineering tools are needed
especially in the case of small sample size and high-
dimensionality, e.g., the neuroimage analysis. The use of
such tools mitigates the overfitting risk of DL models. As
reported in some selected studies?*"*>*”, the DL models
can benefit from feature engineering techniques and have
been shown to outperform the traditional ML models in
the prediction of multiple conditions such as depression,
schizophrenia, and ADHD. However, such tools extract
features relying on prior knowledge; hence may omit
some information that is meaningful for mental outcome
research but unknown yet. An alternative way is to use
CNN to automatically extract information from the raw
data. As reported in the previous study'’, CNNs perform
well in processing raw neuroimage data. Among the
studies reviewed in this study, three?®:30-37 reported to
involve CNN layers and achieved desirable performances.

Electroencephalogram data

As a low-cost, small-size, and high temporal resolution
signal containing up to several hundred channels, analysis
of electroencephalogram (EEG) data has gained sig-
nificant attention to study brain disorders*”. As the EEG
signal is one kind of streaming data that presents a high
density and continuous characteristics, it challenges tra-
ditional feature engineering-based methods to obtain
sufficient information from the raw EEG data to make
accurate predictions. To address this, recently the DL
models have been employed to analyze raw EEG
signal data.

Four articles reviewed proposed to use DL in under-
standing mental health conditions based on the analysis of
EEG signals. Acharya et al.*> used CNN to extract features
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from the input EEG signals. They found that the EEG
signals from the right hemisphere of the human brain are
more distinctive in terms of the detection of depression
than those from the left hemisphere. The findings pro-
vided shreds of evidence that depression is associated with
a hyperactive right hemisphere. Mohan et al.** modeled
the raw EEG signals by DFNN to obtain information
about the human brain waves. They found that the signals
collected from the central (C3 and C4) regions are mar-
ginally higher compared with other brain regions, which
can be used to distinguish the depressed and normal
subjects from the brain wave signals. Zhang et al.*> pro-
posed a concatenated structure of deep recurrent and 3D
CNN to obtain EEG features across different tasks. They
reported that the DL model can capture the spectral
changes of EEG hemispheric asymmetry to distinguish
different mental workload effectively. Li et al.** presented
a computer-aided detection system by extracting multiple
types of information (e.g., spectral, spatial, and temporal
information) to recognize mild depression based on CNN
architecture. The authors found that both spectral and
temporal information of EEG are crucial for prediction of
depression.

Challenges and opportunities EEG data are usually
classified as streaming data that are continuous and are of
high density. Despite the initial success in applying DL
algorithms to analyze EEG data for studying multiple
mental health conditions, there exist several challenges.
One major challenge is that raw EEG data gathered from
sensors have a certain degree of erroneous, noisy, and
redundant information caused by discharged batteries,
failures in sensor readings, and intermittent communica-
tion loss in wireless sensor networks®. This may
challenge the model in extracting meaningful information
from noise. Multiple preprocessing steps (e.g., data
denoising, data interpolation, data transformation, and
data segmentation) are necessary for dealing with the raw
EEG signal before feeding to the DL models. Besides, due
to the dense characteristics in the raw EEG data, analysis
of the streaming data is computationally more expensive,
which poses a challenge for the model architecture
selection. A proper model should be designed relatively
with less training parameters. This is one reason why the
reviewed studies are mainly based on the CNN
architecture.

Electronic health records

Electronic health records (EHRs) are systematic collec-
tions of longitudinal, patient-centered records. Patients’
EHRs consist of both structured and unstructured data:
the structured data include information about a patient’s
diagnosis, medications, and laboratory test results, and the


https://www.fil.ion.ucl.ac.uk/spm/

Su et al. Translational Psychiatry (2020)10:116

unstructured data include information in clinical notes.
Recently, DL models have been applied to analyze EHR
data to study mental health disorders®®.

The first and foremost issue for analyzing the structured
EHR data is how to appropriately handle the longitudinal
records. Traditional ML models address this by collapsing
patients’ records within a certain time window into vec-
tors, which comprised the summary of statistics of the
features in different dimensions®®. For instance, to esti-
mate the probability of suicide deaths, Choi et al.>
leveraged a DFNN to model the baseline characteristics.
One major limitation of these studies is the omittance of
temporality among the clinical events within EHRs. To
overcome this issue, RNNs are more commonly used for
EHR data analysis as an RNN intuitively handles time-
series data. DeepCare”', a long short-term memory net-
work (LSTM)-based DL model, encodes patient’s long-
term health state trajectories to predict the future out-
comes of depressive episodes. As the LSTM architecture
appropriately captures disease progression by modeling
the illness history and the medical interventions, Deep-
Care achieved over 15% improvement in prediction,
compared with the conventional ML methods. In addi-
tion, Lin et al>®> designed two DFNN models for the
prediction of antidepressant treatment response and
remission. The authors reported that the proposed DFNN
can achieve an area under the receiver operating char-
acteristic curve (AUC) of 0.823 in predicting anti-
depressant response.

Analyzing the unstructured clinical notes in EHRs
refers to the long-standing topic of NLP. To extract
meaningful knowledge from the text, conventional NLP
approaches mostly define rules or regular expressions
before the analysis. However, it is challenging to enu-
merate all possible rules or regular expressions. Due to
the recent advance of DL in NLP tasks, DL models have
been developed to mine clinical text data from EHRs to
study mental health conditions. Geraci et al.”® utilized
term frequency-inverse document frequency to repre-
sent the clinical documents by words and developed a
DENN model to identify individuals with depression.
One major limitation of such an approach is that the
semantics and syntax of sentences are lost. In this
context, CNN®* and RNN®” have shown superiority in
modeling syntax for text-based prediction. In parti-
cular, CNN has been used to mine the neuropsychiatric
notes for predicting psychiatric symptom severity®®>’.
Tran and Kavuluru®® used an RNN to analyze the his-
tory of present illness in neuropsychiatric notes for
predicting mental health conditions. The model
engaged an attention mechanism®’, which can specify
the importance of the words in prediction, making the
model more interpretable than their previous CNN
model®®.

Page 18 of 26

Challenges and opportunities Although DL has
achieved promising results in EHR analysis, several
challenges remain unsolved. On one hand, different from
diagnosing physical health condition such as diabetes, the
diagnosis of mental health conditions lacks direct
quantitative tests, such as a blood chemistry test, a buccal
swab, or urinalysis. Instead, the clinicians evaluate signs
and symptoms through patient interviews and question-
naires during which they gather information based on
patient’s self-report. Collection and deriving inferences
from such data deeply relies on the experience and
subjectivity of the clinician. This may account for signals
buried in noise and affect the robustness of the DL model.
To address this challenge, a potential way is to
comprehensively integrate multimodal clinical informa-
tion, including structured and unstructured EHR infor-
mation, as well as neuroimaging and EEG data. Another
way is to incorporate existing medical knowledge, which
can guide model being trained in the right direction. For
instance, the biomedical knowledge bases contain massive
verified interactions between biomedical entities, e.g.,
diseases, genes, and drugs *°. Incorporating such informa-
tion brings in meaningful medical constraints and may
help to reduce the effects of noise on model training
process. On the other hand, implementing a DL model
trained from one EHR system into another system is
challenging, because EHR data collection and representa-
tion is rarely standardized across hospitals and clinics. To
address this issue, national/international collaborative
efforts such as Observational Health Data Sciences and
Informatics (https://ohdsi.org) have developed common
data models, such as OMOP, to standardize EHR data
representation for conducting observational data
analysis®.

Genetic data

Multiple studies have found that mental disorders, e.g.,
depression, can be associated with genetic factors®®%,
Conventional statistical studies in genetics and genomics,
such as genome-wide association studies, have identified
many common and rare genetic variants, such as single-
nucleotide polymorphisms (SNPs), associated with mental
health disorders®®®*, Yet, the effect of the genetic factors
is small and many more have not been discovered. With
the recent developments in next-generation sequencing
techniques, a massive volume of high-throughput genome
or exome sequencing data are being generated, enabling
researchers to study patients with mental health disorders
by examining all types of genetic variations across an
individual’s genome. In recent years, DL*>® has been
applied to identify genetic risk factors associated with
mental illness, by borrowing the capacity of DL in iden-
tifying highly complex patterns in large datasets. Khan
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and Wang®’ integrated genetic annotations, known brain
expression quantitative trait locus, and enhancer/pro-
moter peaks to generate feature vectors of variants, and
developed a DFNN, named ncDeepBrain, to prioritized
non-coding variants associated with mental disorders. To
further prioritize susceptibility genes, they designed
another deep model, iMEGES®®, which integrates the
ncDeepBrain score, general gene scores, and disease-
specific scores for estimating gene risk. Wang et al.*’
developed a novel deep architecture that combines deep
Boltzmann machine architecture’® with conditional and
lateral connections derived from the gene regulatory
network. The model provided insights about intermediate
phenotypes and their connections to high-level pheno-
types (disease traits). Laksshman et al.”! used exome
sequencing data to predict bipolar disorder outcomes of
patients. They developed a CNN and used the convolu-
tion mechanism to capture correlations of the neighbor-
ing loci within the chromosome.

Challenges and opportunities Although the use of
genetic data in DL in studying mental health conditions
shows promise, multiple challenges need to be addressed.
For DL-based risk c/gene prioritization efforts, one major
challenge is the limitation of labeled data. On one hand,
the positive samples are limited, as known risk SNPs or
genes associated with mental health conditions are
limited. For example, there are about 108 risk loci that
were genome-wide significant in ASD. On the other hand,
the negative samples (i.e., SNPs, variants, or genes) may
not be the “true” negative, as it is unclear whether they are
associated with the mental illness yet. Moreover, it is also
challenging to develop DL models for analyzing patient’s
sequencing data for mental illness prediction, as the
sequencing data are extremely high-dimensional (over five
million SNPs in the human genome). More prior domain
knowledge is needed to guide the DL model extracting
patterns from the high-dimensional genomic space.

Vocal and visual expression data

The use of vocal (voice or speech) and visual (video or
image of facial or body behaviors) expression data has
gained the attention of many studies in mental health
disorders. Modeling the evolution of people’s emotional
states from these modalities has been used to identify
mental health status. In essence, the voice data are con-
tinuous and dense signals, whereas the video data are
sequences of frames, i.e., images. Conventional ML
models for analyzing such types of data suffer from the
sophisticated feature extraction process. Due to the recent
success of applying DL in computer vision and sequence
data modeling, such models have been introduced to
analyze the vocal and/or visual expression data. In this
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work, most articles reviewed are to predict mental health
disorders based on two public datasets: (i) the Chi-Mei
corpus, collected by using six emotional videos to elicit
facial expressions and speech responses of the subjects of
bipolar disorder, unipolar depression, and healthy con-
trols;”? and (i) the International Audio/Visual Emotion
Recognition Challenges (AVEC) depression dataset’> ">,
collected within human-computer interaction scenario.
The proposed models include CNNs, RNNs, auto-
encoders, as well as hybrid models based on the above
ones. In particular, CNNs were leveraged to encode the
temporal and spectral features from the voice signals’®%°
and static facial or physical expression features from the
video frames””®'~®* Autoencoders were used to learn
low-dimensional representations for people’s vocal®>*®
and visual expression®”®, and RNNs were engaged to
characterize the temporal evolution of emotion based on
the CNN-learned features and/or other handcraft fea-
tures’ #8470 Few studies focused on analyzing static
images using a CNN architecture to predict mental health
status. Prasetio et al.”’ identified the stress types (e.g.,
neutral, low stress, and high stress) from facial frontal
images. Their proposed CNN model outperforms the
conventional ML models by 7% in terms of prediction
accuracy. Jaiswal et al.”® investigated the relationship
between facial expression/gestures and neurodevelop-
mental conditions. They reported accuracy over 0.93 in
the diagnostic prediction of ADHD and ASD by using the
CNN architecture. In addition, thermal images that track
persons’ breathing patterns were also fed to a deep model
to estimate psychological stress level (mental overload)®.

Challenges and opportunities From the above sum-
mary, we can observe that analyzing vocal and visual
expression data can capture the pattern of subjects’
emotion evolution to predict mental health conditions.
Despite the promising initial results, there remain
challenges for developing DL models in this field. One
major challenge is to link vocal and visual expression data
with the clinical data of patients, given the difficulties
involved in collecting such expression data during clinical
practice. Current studies analyzed vocal and visual
expression over individual datasets. Without clinical
guidance, the developed prediction models have limited
clinical meanings. Linking patients’ expression informa-
tion with clinical variables may help to improve both the
interpretability and robustness of the model. For example,
Gupta et al.”* designed a DENN for affective prediction
from audio and video modalities. The model incorporated
depression severity as the parameter, linking the effects of
depression on subjects’ affective expressions. Another
challenge is the limitation of the samples. For example,
the Chi-Mei dataset contains vocal—-visual data from only
45 individuals (15 with bipolar disorder, 15 with unipolar
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disorder, and 15 healthy controls). Also, there is a lack of
“emotion labels” for people’s vocal and visual expression.
Apart from improving the datasets, an alternative way to
solve this challenge is to use transfer learning, which
transfers knowledge gained with one dataset (usually
more general) to the target dataset. For example, some
studies trained autoencoder in public emotion database
such as eNTERFACE® to generate emotion profiles (EPs).
Other studies®®®* pre-trained CNN over general facial
expression datasets’®” for extracting face appearance
features.

Social media data

With the widespread proliferation of social media
platforms, such as Twitter and Reddit, individuals are
increasingly and publicly sharing information about their
mood, behavior, and any ailments one might be suffering.
Such social media data have been used to identify users’
mental health state (e.g., psychological stress and suicidal
ideation)®.

In this study, the articles that used DL to analyze social
media data mainly focused on stress detection®® ',
depression identification'®*~'°®, and estimation of suicide
risk'9310>197719% 1 general, the core concept across these
work is to mine the textual, and where applicable gra-
phical, content of users’ social media posts to discover
cues for mental health disorders. In this context, the RNN
and CNN were largely used by the researchers. Especially,
RNN usually introduces an attention mechanism to spe-
cify the importance of the input elements in the classifi-
cation process®®. This provides some interpretability for
the predictive results. For example, Ive et al.'® proposed a
hierarchical RNN architecture with an attention
mechanism to predict the classes of the posts (including
depression, autism, suicidewatch, anxiety, etc.). The
authors observed that, benefitting from the attention
mechanism, the model can predict risk text efficiently and
extract text elements crucial for making decisions. Cop-
persmith et al.'”” used LSTM to discover quantifiable
signals about suicide attempts based on social media
posts. The proposed model can capture contextual
information between words and obtain nuances of lan-
guage related to suicide.

Apart from text, users also post images on social
media. The properties of the images (e.g., color theme,
saturation, and brightness) provide some cues reflecting
users’ mental health status. In addition, millions of
interactions and relationships among users can reflect
the social environment of individuals that is also a kind
of risk factors for mental illness. An increasing number
of studies attempted to combine these two types of
information with text content for predictive modeling.
For example, Lin et al.”” leveraged the autoencoder to
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extract low-level and middle-level representations from
texts, images, and comments based on psychological and
art theories. They further extended their work with a
hybrid model based on CNN by integrating post content
and social interactions'®. The results provided an
implication that the social structure of the stressed
users’ friends tended to be less connected than that of
the users without stress.

Challenges and opportunities The aforementioned
studies have demonstrated that using social media data
has the potential to detect users with mental health
problems. However, there are multiple challenges
towards the analysis of social media data. First, given
that social media data are typically de-identified, there is
no straightforward way to confirm the “true positives”
and “true negatives” for a given mental health condition.
Enabling the linkage of user’s social media data with
their EHR data—with appropriate consent and privacy
protection—is challenging to scale, but has been done in
a few settings“o. In addition, most of the previous
studies mainly analyzed textual and image data from
social media platforms, and did not consider analyzing
the social network of users. In one study, Rosenquist
et al.'™ reported that the symptoms of depression are
highly correlated inside the circle of friends, indicating
that social network analysis is likely to be a potential
way to study the prevalence of mental health problems.
However, comprehensively modeling text information
and network structure remains challenging. In this
context, graph convolutional networks''”> have been
developed to address networked data mining. Moreover,
although it is possible to discover online users with
mental illness by social media analysis, translation of
this innovation into practical applications and offer aid
to users, such as providing real-time interventions, are
largely needed''?.

Discussion: findings, open issues, and future
directions
Principle findings

The purpose of this study is to investigate the current
state of applications of DL techniques in studying mental
health outcomes. Out of 2261 articles identified based on
our search terms, 57 studies met our inclusion criteria and
were reviewed. Some studies that involved DL models but
did not highlight the DL algorithms’ features on analysis
were excluded. From the above results, we observed that
there are a growing number of studies using DL models
for studying mental health outcomes. Particularly, multi-
ple studies have developed disease risk prediction models
using both clinical and non-clinical data, and have
achieved promising initial results.
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Data bias

DL models “think to learn” like a human brain relying
on their multiple layers of interconnected computing
neurons. Therefore, to train a deep neural network, there
are multiple parameters (i.e., weights associated links
between neurons within the network) being required to
learn. This is one reason why DL has achieved great
success in the fields where a massive volume of data can
be easily collected, such as computer vision and text
mining. Yet, in the health domain, the availability of large-
scale data is very limited. For most selected studies in this
review, the sample sizes are under a scale of 10*. Data
availability is even more scarce in the fields of neuroi-
maging, EEG, and gene expression data, as such data
reside in a very high-dimensional space. This then leads to
the problem of “curse of dimensionality”lM, which chal-
lenges the optimization of the model parameters.

One potential way to address this challenge is to reduce
the dimensionality of the data by feature engineering
before feeding information to the DL models. On one
hand, feature extraction approaches can be used to obtain
different types of features from the raw data. For example,
several studies reported in this review have attempted to
use preprocessing tools to extract features from neuroi-
maging data. On the other hand, feature selection that is
commonly used in conventional ML models is also an
option to reduce data dimensionality. However, the fea-
ture selection approaches are not often used in the DL
application scenario, as one of the intuitive attributes of
DL is the capacity to learn meaningful features from “all”
available data. The alternative way to address the issue of
data bias is to use transfer learning where the objective is
to improve learning a new task through the transfer of
knowledge from a related task that has already been
learned'™>. The basic idea is that data representations
learned in the earlier layers are more general, whereas
those learned in the latter layers are more specific to the
prediction task''®. In particular, one can first pre-train a
deep neural network in a large-scale “source” dataset, then
stack fully connected layers on the top of the network and
fine-tune it in the small “target” dataset in a standard
backpropagation manner. Usually, samples in the “source”
dataset are more general (e.g., general image data),
whereas those in the “target” dataset are specific to the
task (e.g., medical image data). A popular example of the
success of transfer learning in the health domain is the
dermatologist-level classification of skin cancer'’’. The
authors introduced Google’s Inception v3 CNN archi-
tecture pre-trained over 1.28 million general images and
fine-tuned in the clinical image dataset. The model
achieved very high-performance results of skin cancer
classification in epidermal (AUC=0.96), melanocytic
(AUC=0.96), and melanocytic—dermoscopic images
(AUC=0.94). In facial expression-based depression
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prediction, Zhu et al.** pre-trained CNN on the public
face recognition dataset to model the static facial
appearance, which overcomes the issue that there is no
facial expression label information. Chao et al.** also pre-
trained CNN to encode facial expression information. The
transfer scheme of both of the two studies has been
demonstrated to be able to improve the prediction
performance.

Diagnosis and prediction issues

Unlike the diagnosis of physical conditions that can be
based on lab tests, diagnoses of the mental illness typically
rely on mental health professionals’ judgment and patient
self-report data. As a result, such a diagnostic system may
not accurately capture the psychological deficits and
symptom progression to provide appropriate therapeutic
interventions''®''?, This issue accordingly accounts for
the limitation of the prediction models to assist clinicians
to make decisions. Except for several studies using the
unsupervised autoencoder for learning low-dimensional
representations, most studies reviewed in this study
reported using supervised DL models, which need the
training set containing “true” (i.e., expert provided) labels
to optimize the model parameters before the model being
used to predict labels of new subjects. Inevitably, the
quality of the expert-provided diagnostic labels used for
training sets the upper-bound for the prediction perfor-
mance of the model.

One intuitive route to address this issue is to use an
unsupervised learning scheme that, instead of learning to
predict clinical outcomes, aims at learning compacted yet
informative representations of the raw data. A typical
example is the autoencoder (as shown in Fig. 1d), which
encodes the raw data into a low-dimensional space, from
which the raw data can be reconstructed. Some studies
reviewed have proposed to leverage autoencoder to
improve our understanding of mental health outcomes. A
constraint of the autoencoder is that the input data should
be preprocessed to vectors, which may lead to informa-
tion loss for image and sequence data. To address this,
recently convolutional-autoencoder'” and LSTM-
autoencoder'* have been developed, which integrate
the convolution layers and recurrent layers with the
autoencoder architecture and enable us to learn infor-
mative low-dimensional representations from the raw
image data and sequence data, respectively. For instance,
Baytas et al.'**> developed a variation of LSTM-
autoencoder on patient EHRs and grouped Parkinson’s
disease patients into meaningful subtypes. Another
potential way is to predict other clinical outcomes instead
of the diagnostic labels. For example, several selected
studies proposed to predict symptom severity
scores>®>777 82848789 1n addition, Du et al.'%® attempted
to identify suicide-related psychiatric stressors from users’



Su et al. Translational Psychiatry (2020)10:116

posts on Twitter, which plays an important role in the
early prevention of suicidal behaviors. Furthermore,
training model to predict future outcomes such as treat-
ment response, emotion assessments, and relapse time is
also a promising future direction.

Multimodal modeling

The field of mental health is heterogeneous. On one hand,
mental illness refers to a variety of disorders that affect
people’s emotions and behaviors. On the other hand,
though the exact causes of most mental illnesses are
unknown to date, it is becoming increasingly clear that the
risk factors for these diseases are multifactorial as multiple
genetic, environmental, and social factors interact to influ-
ence an individual's mental health'*>'**, As a result of
domain heterogeneity, researchers have the chance to study
the mental health problems from different perspectives,
from molecular, genomic, clinical, medical imaging, phy-
siological signal to facial, and body expressive and online
behavioral. Integrative modeling of such multimodal data
means comprehensively considering different aspects of the
disease, thus likely obtaining deep insight into mental
health. In this context, DL models have been developed for
multimodal modeling. As shown in Fig. 4, the hierarchical
structure of DL makes it easily compatible with multimodal

e A

Unimodality Unimodality

Prediction

Fig. 4 An illustration of the multimodal deep neural network.
One can model each modality with a specific network and combine
them using the final fully-connected layers. In this way, parameters of
the entire neural network can be jointly learned in a typical
backpropagation manner.

Page 22 of 26

integration. In particular, one can model each modality with
a specific network and combine them by the final fully
connected layers, such that parameters can be jointly
learned by a typical backpropagation manner. In this review,
we found an increasing number of studies have attempted
to use multimodal modeling. For example, Zou et al.*®
developed a multimodal model composed of two CNNs for
modeling fMRI and sMRI modalities, respectively. The
model achieved 69.15% accuracy in predicting ADHD,
which outperformed the unimodal models (66.04% for fMRI
modal-based and 65.86% for sMRI modal-based). Yang
et al.”’ proposed a multimodal model to combine vocal and
visual expression for depression cognition. The model
results in 39% lower prediction error than the unimodal
models.

Model interpretability

Due to the end-to-end design, the DL models usually
appear to be “black boxes™ they take raw data (e.g., MRI
images, free-text of clinical notes, and EEG signals) as input,
and yield output to reach a conclusion (e.g., the risk of a
mental health disorder) without clear explanations of their
inner working. Although this might not be an issue in other
application domains such as identifying animals from
images, in health not only the model’s prediction perfor-
mance but also the clues for making the decision are
important. For example in the neuroimage-based depres-
sion identification, despite estimation of the probability that
a patient suffers from mental health deficits, the clinicians
would focus more on recognizing abnormal regions or
patterns of the brain associated with the disease. This is
really important for convincing the clinical experts about
the actions recommended from the predictive model, as
well as for guiding appropriate interventions. In addition, as
discussed above, the introduction of multimodal modeling
leads to an increased challenge in making the models more
interpretable. Attempts have been made to open the “black
box” of DL**'*7'*’_ Currently, there are two general
directions for interpretable modeling: one is to involve the
systematic modification of the input and the measure of any
resulting changes in the output, as well as in the activation
of the artificial neurons in the hidden layers. Such a strategy
is usually used in CNN in identifying specific regions of an
image being captured by a convolutional layer'*®. Another
way is to derive tools to determine the contribution of one
or more features of the input data to the output. In this
case, the widely used tools include Shapley Additive
Explanationlzg, LIME'%, DeepLIPTBO, etc., which are able
to assign each feature an importance score for the specific
prediction task.

Connection to therapeutic interventions
According to the studies reviewed, it is now possible to
detect patients with mental illness based on different
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types of data. Compared with the traditional ML techni-
ques, most of the reviewed DL models reported higher
prediction accuracy. The findings suggested that the DL
models are likely to assist clinicians in improved diagnosis
of mental health conditions. However, to associate diag-
nosis of a condition with evidence-based interventions
and treatment, including identification of appropriate
medication'?', prediction of treatment response®’, and
estimation of relapse risk'** still remains a challenge.
Among the reviewed studies, only one® proposed to
target at addressing these issues. Thus, further efforts are
needed to link the DL techniques with the therapeutic
intervention of mental illness.

Domain knowledge

Another important direction is to incorporate domain
knowledge. The existing biomedical knowledge bases are
invaluable sources for solving healthcare problems'>*'**,
Incorporating domain knowledge could address the lim-
itation of data volume, problems of data quality, as well as
model generalizability. For example, the unified medical
language system'®” can help to identify medical entities
from the text and gene—gene interaction databases'>®
could help to identify meaningful patterns from genomic
profiles.

Conclusion

Recent years have witnessed the increasing use of DL
algorithms in healthcare and medicine. In this study, we
reviewed existing studies on DL applications to study
mental health outcomes. All the results available in the
literature reviewed in this work illustrate the applicability
and promise of DL in improving the diagnosis and
treatment of patients with mental health conditions. Also,
this review highlights multiple existing challenges in
making DL algorithms clinically actionable for routine
care, as well as promising future directions in this field.

Acknowledgements
The work is supported by NSF 1750326, ROT MH112148, RO1T MH105384, RO1
MH119177, RO1 MH121922, and P50 MH113838.

Author contributions

CS., ZX. and FW. planned and structured the whole paper. CS. and ZX.
conducted the literature review and drafted the manuscript. J.P. and F.W.
reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/541398-020-0780-3).

Page 23 of 26

Received: 31 August 2019 Revised: 17 February 2020 Accepted: 26
February 2020
Published online: 22 April 2020

References

1. World Health Organization. The World Health Report 2001: Mental Health: New

Understanding, New Hope (World Health Organization, Switzerland, 2001).
2. Marcus, M, Yasamy, M. T, van Ommeren, M, Chisholm, D. & Saxena, S.
Depression: A Global Public Health Concern (World Federation of Mental
Health, World Health Organisation, Perth, 2012).

3. Hamilton, M. Development of a rating scale for primary depressive illness. Br.
J. Soc. Clin. Psychol. 6, 278-296 (1967).

4. Dwyer, D. B, Falkai, P. & Koutsouleris, N. Machine learing approaches for
clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91-118 (2018).

5. Lovejoy, C. A, Buch, V. & Maruthappu, M. Technology and mental health: the
role of artificial intelligence. Eur. Psychiatry 55, 1-3 (2019).

6. Wongkoblap, A, Vadillo, M. A. & Curcin, V. Researching mental health dis-
orders in the era of social media: systematic review. J. Med. Internet Res. 19,
€228 (2017).

LeCun, Y, Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).

8. Miotto, R, Wang, F, Wang, S, Jiang, X. & Dudley, J. T. Deep learning for
healthcare: review, opportunities and challenges. Brief. Bioinformatics 19,
1236-1246 (2017).

9. Durstewitz, D, Koppe, G. & Meyer-Lindenberg, A. Deep neural networks in
psychiatry. Mol. Psychiatry 24, 1583-1598 (2019).

10. Vieira, S, Pinaya, W. H. & Mechelli, A. Using deep learning to investigate the
neuroimaging correlates of psychiatric and neurological disorders: methods
and applications. Neurosci. Biobehav. Rev. 74, 58-75 (2017).

11. Shatte, A. B, Hutchinson, D. M. & Teague, S. J. Machine learning in mental
health: a scoping review of methods and applications. Psychol. Med. 49,
1426-1448 (2019).

12, Murphy, K. P. Machine Learning: A Probabilistic Perspective (MIT Press,
Cambridge, 2012).

13. Biship, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics) (Springer-Verlag, Berlin, 2007).

14.  Bengio, Y, Simard, P. & Frasconi, P. Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Netw. Learn. Syst. 5, 157-166
(1994).

15. LeCun, Y, Bottou, L, Bengio, Y. & Haffner, P. Gradient-based learning applied
to document recognition. Proc. IEEE 86, 2278-2324 (1998).

16.  Vincent, P, Larochelle, H, Lajoie, I, Bengio, Y. & Manzagol, P. A. Stacked
denoising autoencoders: learning useful representations in a deep network
with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010).

17. Rumelhart, D. E, Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Cogn. modeling. 5, 1 (1988).

18. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9,
1735-1780 (1997).

19.  Cho, K, Van Merriénboer, B, Bahdanau, D. & Bengio, Y. On the properties of
neural machine translation: encoder-decoder approaches. In Proc. SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation
103-111 (Doha, Qatar, 2014).

20. Liou, C, Cheng, W, Liou, J. & Liou, D. Autoencoder for words. Neuro-
computing 139, 84-96 (2014).

21. Moher, D, Liberati, A, Tetzlaff, J. & Altman, D. G. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern.
Med. 151, 264-269 (2009).

22. Schnack, H. G. et al. Can structural MRI aid in clinical classification? A machine
learning study in two independent samples of patients with schizophrenia,
bipolar disorder and healthy subjects. Neuroimage 84, 299-306 (2014).

23. OToole, A. J. et al. Theoretical, statistical, and practical perspectives on
pattern-based classification approaches to the analysis of functional neu-
roimaging data. J. Cogn. Neurosci. 19, 1735-1752 (2007).

24.  Logothetis, N. K, Pauls, J, Augath, M, Trinath, T. & Oeltermann, A. Neuro-
physiological investigation of the basis of the fMRI signal. Nature 412, 150
(2001).

25. Kuang, D. & He, L. Classification on ADHD with deep learning. In Proc. Int.
Conference on Cloud Computing and Big Data 27-32 (Wuhan, China, 2014).

26. Kuang, D, Guo, X, An, X, Zhao, Y. & He, L. Discrimination of ADHD based on
fMRI data with deep belief network. In Proc. Int. Conference on Intelligent
Computing 225-232 (Taiyuan, China, 2014).

~


https://doi.org/10.1038/s41398-020-0780-3
https://doi.org/10.1038/s41398-020-0780-3

Su et al. Translational Psychiatry (2020)10:116

27.

28,

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39,

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

Farz, S, Kianian, S. & Rastkhadive, |. Diagnosis of attention deficit hyperactivity
disorder using deep belief network based on greedy approach. In Proc. 5th
Int. Symposium on Computational and Business Intelligence 96-99 (Dubai,
United Arab Emirates, 2017).

Zou, L, Zheng, J. & McKeown, M. J. Deep learning based automatic
diagnoses of attention deficit hyperactive disorder. In Proc. 2017 IEEE Global
Conference on Signal and Information Processing (GlobalSIP) 962-966
(Montreal, Canada, 2017).

Riaz A. et al. Deep fMRI: an end-to-end deep network for classification of fMRI
data. In Proc. 2018 IEEE 15th Int. Symposium on Biomedical Imaging.
1419-1422 (Washington, DC, USA, 2018).

Zou, L, Zheng, J, Miao, C, Mckeown, M. J. & Wang, Z. J. 3D CNN based
automatic diagnosis of attention deficit hyperactivity disorder using func-
tional and structural MRI. [EEE Access. 5, 23626-23636 (2017).

Sen, B, Borle, N. C, Greiner, R. & Brown, M. R. A general prediction model for
the detection of ADHD and Autism using structural and functional MRI. PLoS
ONE 13, 0194856 (2018).

Zeng, L. et al. Multi-site diagnostic classification of schizophrenia using dis-
criminant deep learing with functional connectivity MRI. EBioMedicine 30,
74-85 (2018).

Pinaya, W. H. et al. Using deep belief network modelling to characterize
differences in brain morphometry in schizophrenia. Sci. Rep. 6, 38897 (2016).
Pinaya, W. H, Mechelli, A. & Sato, J. R. Using deep autoencoders to identify
abnormal brain structural patterns in neuropsychiatric disorders: a large-scale
multi-sample study. Hum. Brain Mapp. 40, 944-954 (2019).

Ulloa, A, Plis, S, Erhardt, E. & Calhoun, V. Synthetic structural magnetic
resonance image generator improves deep learning prediction of schizo-
phrenia. In Proc. 25th IEEE Int. Workshop on Machine Learning for Signal
Processing (MLSP) 1-6 (Boston, MA, USA, 2015).

Matsubara, T, Tashiro, T. & Uehara, K Deep neural generative model of
functional MRI images for psychiatric disorder diagnosis. IEEE Trans. Biomed.
Eng. 99 (2019).

Geng, X. & Xu, J. Application of autoencoder in depression diagnosis. In 2077
3rd Int. Conference on Computer Science and Mechanical Automation (Wuhan,
China, 2017).

Aghdam, M. A, Sharifi, A. & Pedram, M. M. Combination of rs-fMRI and sMRI
data to discriminate autism spectrum disorders in young children using
deep belief network. J. Digit. Imaging 31, 895-903 (2018).

Shen, D, Wu, G. & Suk, H. -I. Deep learning in medical image analysis. Annu.
Rev. Biomed. Eng. 19, 221-248 (2017).

Yan, C. & Zang, Y. DPARSF: a MATLAB toolbox for “pipeline” data analysis of
resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010).

Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat. Methods 16, 111-116 (2019).

Herrmann, C. & Demiralp, T. Human EEG gamma oscillations in neu-
ropsychiatric disorders. Clin. Neurophysiol. 116, 2719-2733 (2005).

Acharya, U. R. et al. Automated EEG-based screening of depression using
deep convolutional neural network. Comput. Meth. Prog. Biol. 161, 103-113
(2018).

Mohan, Y, Chee, S. S, Xin, D. K. P. & Foong, L. P. Artificial neural network for
classification of depressive and normal. In EEG Proc. 2016 IEEE EMBS Con-
ference on Biomedical Engineering and Sciences 286-290 (Kuala Lumpur,
Malaysia, 2016).

Zhang, P, Wang, X, Zhang, W. & Chen, J. Learning spatial-spectral-temporal
EEG features with recurrent 3D convolutional neural networks for cross-task
mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 31-42
(2018).

Li, X. et al. EEG-based mild depression recognition using convolutional neural
network. Med. Biol. Eng. Comput. 47, 1341-1352 (2019).

Patel, S, Park, H, Bonato, P, Chan, L. & Rodgers, M. A review of wearable
sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9,
21 (2012).

Smoller, J. W. The use of electronic health records for psychiatric pheno-
typing and genomics. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177,
601-612 (2018).

Wu, J, Roy, J. & Stewart, W. F. Prediction modeling using EHR data: chal-
lenges, strategies, and a comparison of machine learning approaches. Med.
Care. 48, S106-S113 (2010).

Chai, S. B, Lee, W, Yoon, J. H, Won, J. U. & Kim, D. W. Ten-year prediction of
suicide death using Cox regression and machine learning in a nationwide
retrospective cohort study in South Korea. J. Affect. Disord. 231, 8-14 (2018).

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Page 24 of 26

Pham, T, Tran, T, Phung, D. & Venkatesh, S. Predicting healthcare trajectories
from medical records: a deep learning approach. J. Biomed. Inform. 69,
218-229 (2017).

Lin, E. et al. A deep learning approach for predicting antidepressant response
in major depression using clinical and genetic biomarkers. Front. Psychiatry 9,
290 (2018).

Geraci, J. et al. Applying deep neural networks to unstructured text notes in
electronic medical records for phenotyping youth depression. Evid. Based
Ment. Health 20, 83-87 (2017).

Kim, Y. Convolutional neural networks for sentence classification. arXiv Prepr.
arXiv 1408, 5882 (2014).

Yang, Z. et al. Hierarchical attention networks for document classification. In
Proc. 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies 1480-1489 (San
Diego, California, USA, 2016).

Rios, A. & Kavuluru, R. Ordinal convolutional neural networks for predicting
RDoC positive valence psychiatric symptom severity scores. J. Biomed. Inform.
75, S85-593 (2017).

Dai, H. & Jonnagaddala, J. Assessing the severity of positive valence symp-
toms in initial psychiatric evaluation records: Should we use convolutional
neural networks? PLoS ONE 13, 0204493 (2018).

Tran, T. & Kavulury, R. Predicting mental conditions based on “history of
present illness” in psychiatric notes with deep neural networks. J. Biomed.
Inform. 75, S138-5148 (2017).

Samek, W, Binder, A, Montavon, G, Lapuschkin, S. & Mdiller, K-R. Evaluating
the visualization of what a deep neural network has learned. [EEE Trans.
Neural Netw. Learn. Syst. 28, 2660-2673 (2016).

Hripcsak, G. et al. Characterizing treatment pathways at scale using the
OHDSI network. Proc. Natl. Acad. Sci. USA 113, 7329-7336 (2016).

McGuffin, P, Owen, M. J. & Gottesman, |. |. Psychiatric Genetics and Genomics
(Oxford Univ. Press, New York, 2004).

Levinson, D. F. The genetics of depression: a review. Biol. Psychiatry 60, 84-92
(2006).

Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants
and refine the genetic architecture of major depression. Nat. Genet. 50, 668
(2018).

Mullins, N. & Lewis, C. M. Genetics of depression: progress at last. Curr.
Psychiatry Rep. 19, 43 (2017).

Zou, J. et al. A primer on deep learming in genomics. Nat. Genet. 51, 12-18
(2019).

Yue, T. & Wang, H. Deep learning for genomics: a concise overview. Preprint
at arXiv:1802.00810 (2018).

Khan, A. & Wang, K. A deep learning based scoring system for prioritizing
susceptibility variants for mental disorders. In Proc. 2017 IEEE Int. Con-
ference on Bioinformatics and Biomedicine (BIBM) 1698-1705 (Kansas City,
USA, 2017).

Khan, A, Liu, Q. & Wang, K iMEGES: integrated mental-disorder genome
score by deep neural network for prioritizing the susceptibility genes for
mental disorders in personal genomes. BMC Bioinformatics 19, 501 (2018).
Wang, D. et al. Comprehensive functional genomic resource and integrative
model for the human brain. Science 362, eaat8464 (2018).

Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. In Proc. 12th Int.
Conference on Artificial Intelligence and Statistics 448-455 (Clearwater, Florida,
USA, 2009).

Laksshman, S, Bhat, R. R, Viswanath, V. & Li, X. DeepBipolar: Identifying
genomic mutations for bipolar disorder via deep learning. Hum. Mutat. 38,
1217-1224 (2017).

Huang, K-Y. et al. Data collection of elicited facial expressions and speech
responses for mood disorder detection. In Proc. 2015 Int. Conference on
Orange Technologies (ICOT) 42-45 (Hong Kong, China, 2015).

Valstar, M. et al. AVEC 2013: the continuous audio/visual emotion and
depression recognition challenge. In Proc. 3rd ACM Int. Workshop on Audio/
Visual Emotion Challenge 3-10 (Barcelona, Spain, 2013).

Valstar, M. et al. Avec 2014: 3d dimensional affect and depression recognition
challenge. In Proc. 4th Int. Workshop on Audio/Visual Emotion Challenge 3-10
(Orlando, Florida, USA, 2014).

Valstar, M. et al. Avec 2016: depression, mood, and emotion recognition
workshop and challenge. In Proc. 6th Int. Workshop on Audio/Visual Emotion
Challenge 3-10 (Amsterdam, The Netherlands, 2016).

Ma, X, Yang, H, Chen, Q, Huang, D. & Wang, Y. Depaudionet: an efficient
deep model for audio based depression classification. In Proc. 6th Int.



Su et al. Translational Psychiatry (2020)10:116

77.

78.

79.

80.

81.

82.

83.

85.

86.

87.

88.

89.

90.

on.

92.

93.

94.

95.

96.

Workshop on  Audio/Visual Emotion Challenge 35-42 (Amsterdam, The
Netherlands, 2016).

He, L. & Cao, C. Automated depression analysis using convolutional neural
networks from speech. J. Biomed. Inform. 83, 103-111 (2018).

Li, J, Fu X, Shao, Z & Shang, Y. Improvement on speech depression
recognition based on deep networks. In Proc. 2018 Chinese Automation
Congress (CAC) 2705-2709 (Xian, China, 2018).

Yang, L, Jiang, D, Han, W. & Sahli, H. DCNN and DNN based multi-modal
depression recognition. In Proc. 2017 7th Int. Conference on Affective Com-
puting and Intelligent Interaction 484-489 (San Antonio, Texas, USA, 2017).
Huang, K Y, Wu, C. H. & Su, M. H. Attention-based convolutional neural
network and long short-term memory for short-term detection of mood
disorders based on elicited speech responses. Pattern Recogn. 88, 668-678
(2019).

Dawood, A, Turner, S. & Perepa, P. Affective computational model to extract
natural affective states of students with Asperger syndrome (AS) in
computer-based learning environment. [EEE Access. 6, 6702667034 (2018).
Song, S, Shen, L. & Valstar, M. Human behaviour-based automatic depression
analysis using hand-crafted statistics and deep learned spectral features. In
Proc. 13th IEEE Int. Conference on Automatic Face & Gesture Recognition
158-165 (Xi'an, China, 2018).

Zhu, Y, Shang, Y, Shao, Z. & Guo, G. Automated depression diagnosis based
on deep networks to encode facial appearance and dynamics. IEEE Trans.
Affect. Comput. 9, 578-584 (2018).

Chao, L, Tao, J, Yang, M. & Li, Y. Multi task sequence learning for depression
scale prediction from video. In Proc. 2015 Int. Conference on Affective Com-
puting and Intelligent Interaction (ACI)) 526-531 (Xi'an, China, 2015).

Yang, T. H, Wu, C. H, Huang, K Y. & Su, M. H. Detection of mood disorder
using speech emotion profiles and LSTM. In Proc. 10th Int. Symposium on
Chinese Spoken Language Processing (ISCSLP) 1-5 (Tianjin, China, 2016).
Huang, K. Y, Wu, C. H, Su, M. H. & Chou, C. H. Mood disorder identification
using deep bottleneck features of elicited speech. In Proc. 2017 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC) 1648-1652 (Kuala Lumpur, Malaysia, 2017).

Jan, A, Meng, H, Gaus, Y. F. B. A & Zhang, F. Artificial intelligent system for
automatic depression level analysis through visual and vocal expressions.
IEEE Trans. Cogn. Dev. Syst. 10, 668-680 (2017).

Su, M. H, Wy, C. H, Huang, K Y. & Yang, T. H. Cell-coupled long short-term
memory with I-skip fusion mechanism for mood disorder detection through
elicited audiovisual features. IEEE Trans. Neural Netw. Learn. Syst. 31 (2019).
Harati, S, Crowell, A, Mayberg, H. & Nemati, S. Depression severity classifi-
cation from speech emotion. In Proc. 40th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC) 5763-5766
(Honolulu, HI, USA, 2018).

Su, M. H, Wu, C. H, Huang, K Y, Hong, Q. B. & Wang, H. M. Exploring
microscopic fluctuation of facial expression for mood disorder classification.
In Proc. 2017 Int. Conference on Orange Technologies (ICOT) 65-69 (Singapore,
2017).

Prasetio, B. H, Tamura, H. & Tanno, K. The facial stress recognition based on
multi-histogram features and convolutional neural network. In Proc. 2018 IEEE
Int. Conference on Systems, Man, and Cybernetics (SMC) 881-887 (Miyazaki,
Japan, 2018).

Jaiswal, S, Valstar, M. F, Gillott, A. & Daley, D. Automatic detection of ADHD
and ASD from expressive behaviour in RGBD data. In Proc. 12th IEEE Int.
Conference on Automatic Face & Gesture Recognition 762-769 (Washington,
DC, USA, 2017).

Cho, Y, Bianchi-Berthouze, N. & Julier, S. J. DeepBreath: deep learning of
breathing patterns for automatic stress recognition using low-cost thermal
imaging in unconstrained settings. In Proc. 2017 7th Int. Conference on
Affective Computing and Intelligent Interaction (ACH) 456-463 (San Antonio,
Texas, USA, 2017).

Gupta, R, Sahu, S, Espy-Wilson, C. Y. & Narayanan, S. S. An affect prediction
approach through depression severity parameter incorporation in neural
networks. In Proc. 2017 Int. Conference on INTERSPEECH 3122-3126 (Stock-
holm, Sweden, 2017).

Martin, O, Kotsia, I, Macg, B. & Pitas, |. The eNTERFACE'05 audio-visual
emotion database. In Proc. 22nd Int. Conference on Data Engineering Work-
shops 8-8 (Atlanta, GA, USA, 2006).

Goodfellow, I. J. et al. Challenges in representation learning: A report on three
machine learming contests. In Proc. Int. Conference on Neural Information
Processing 117-124 (Daegu, Korea, 2013).

97.

9.

100.

102.

103.

105.

107.

108.

100.

110.

11

113.

114.

115.

116.

17.

118.

119.

120.

121.

Page 25 of 26

Yi, D, Lei, Z, Liao, S. & Li, S. Z. Learning face representation from scratch.
Preprint at arXiv 1411.7923 (2014).

Lin, H. et al. User-level psychological stress detection from social media using
deep neural network. In Proc. 22nd ACM Int. Conference on Multimedia
507-516 (Orlando, Florida, USA, 2014).

Lin, H. et al. Psychological stress detection from cross-media microblog data
using deep sparse neural network. In Proc. 2014 IEEE Int. Conference on
Multimedia and Expo 1-6 (Chengdu, China, 2014).

Li, Q. et al. Correlating stressor events for social network based adolescent
stress prediction. In Proc. Int. Conference on Database Systems for Advanced
Applications 642-658 (Suzhou, China, 2017).

Lin, H. et al. Detecting stress based on social interactions in social networks.
IEEE Trans. Knowl. Data En. 29, 1820-1833 (2017).

Cong, Q. et al. X-A-BILSTM: a deep learning approach for depression
detection in imbalanced data. In Proc. 2018 IEEE Int. Conference on Bioinfor-
matics and Biomedicine (BIBM) 1624-1627 (Madrid, Spain, 2018).

Ive, J, Gkotsis, G, Dutta, R, Stewart, R. & Velupillai, S. Hierarchical neural model
with attention mechanisms for the classification of social media text related
to mental health. In Proc. Fifth Workshop on Computational Linguistics and
Clinical Psychology: From Keyboard to Clinic 69-77 (New Orleans, Los Angeles,
USA, 2018).

Sadeque, F, Xu, D. & Bethard, S. UArizona at the CLEF eRisk 2017 pilot task:
linear and recurrent models for early depression detection. CEUR Workshop
Proc. 1866 (2017).

Fraga, B. S., da Silva, A. P. C. & Murai, F. Online social networks in health
care: a study of mental disorders on Reddit. In Proc. 2018 IEEE/WIC/ACM
Int. Conference on Web Intelligence (WI) 568-573 (Santiago, Chile,
2018).

Gkotsis, G. et al. Characterisation of mental health conditions in social media
using Informed Deep Learning. Sci. Rep. 7, 45141 (2017).

Coppersmith, G, Leary, R, Crutchley, P. & Fine, A. Natural language processing
of social media as screening for suicide risk. Biomed. Inform. Insights 10,
1178222618792860 (2018).

Du, J. et al. Extracting psychiatric stressors for suicide from social media using
deep learning. BMC Med. Inform. Decis. Mak. 18, 43 (2018).

Alambo, A. et al. Question answering for suicide risk assessment using Reddit.
In Proc. IEEE 13th Int. Conference on Semantic Computing 468-473 (Newport
Beach, California, USA, 2019).

Eichstaedt, J. C. et al. Facebook language predicts depression in medical
records. Proc. Natl Acad. Sci. USA 115, 11203-11208 (2018).

Rosenquist, J. N,, Fowler, J. H. & Christakis, N. A. Social network determinants
of depression. Mol. Psychiatry 16, 273 (2011).

Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolu-
tional networks. In Proc. 2017 Int. Conference on Learning Representations
(Toulon, France, 2017).

Rice, S. M. et al. Online and social networking interventions for the treatment
of depression in young people: a systematic review. J. Med. Internet Res. 16,
€206 (2014).

Hastie, T, Tibshirani, R. & Friedman, J. The elements of statistical learning: data
mining, inference, and prediction. Springer Series in Statistics. Math. Intell. 27,
83-85 (2009).

Torrey, L. & Shavlik, J. in Handbook of Research on Machine Learning Appli-
cations and Trends: Algorithms, Methods, and Techniques 242-264 (Gl Global,
2010).

Yosinski, J, Clune, J, Bengio, Y. & Lipson, H. How transferable are features in
deep neural networks? In Proc. Advances in Neural Information Processing
Systems 3320-3328 (Montreal, Canada, 2014).

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542, 115 (2017).

Insel, T. et al. Research domain criteria (RDoC): toward a new classification
framework for research on mental disorders. Am. Psychiatr. Assoc. 167,
748-751 (2010).

Nelson, B, McGorry, P. D, Wichers, M, Wigman, J. T. & Hartmann, J. A. Moving
from static to dynamic models of the onset of mental disorder: a review.
JAMA Psychiatry 74, 528-534 (2017).

Guo, X, Liu, X, Zhu, E. & Yin, J. Deep clustering with convolutional auto-
encoders. In Proc. Int. Conference on Neural Information Processing 373-382
(Guangzhou, China, 2017).

Srivastava, N, Mansimov, E. & Salakhudinov, R. Unsupervised learning of video
representations using LSTMs. In Proc. Int. Conference on Machine Learning
843-852 (Lille, France, 2015).



Su et al. Translational Psychiatry (2020)10:116

122.

123.

124.

125.

126.

127.

128.

Baytas, I. M. et al. Patient subtyping via time-aware LSTM networks. In Proc.
23rd ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining
65-74 (Halifax, Canada, 2017).

American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders (DSM-5®) (American Psychiatric Pub, Washington, DC, 2013).
Biological Sciences Curriculum Study. In: NIH Curriculum Supplement Series
(Internet) (National Institutes of Health, USA, 2007).

Noh, H, Hong, S. & Han, B. Learning deconvolution network for semantic
segmentation. In Proc. IEEE Int. Conference on Computer Vision 1520-1528
(Santiago, Chile, 2015).

Grln, F, Rupprecht, C, Navab, N. & Tombari, F. A taxonomy and library for
visualizing learned features in convolutional neural networks. In Proc. 33rd Int.
Conference on Machine Learning (ICML) Workshop on Visualization for Deep
Learning (New York, USA, 2016).

Ribeiro, M. T., Singh, S. & Guestrin, C. Why should | trust you?: Explaining
the predictions of any classifier. In Proc. 22nd ACM SIGKDD Int. Con-
ference on Knowledge Discovery and Data Mining 1135-1144 (San
Francisco, CA, 2016).

Zhang, Q. S. & Zhy, S. C. Visual interpretability for deep leaming: a survey.
Front. Inf. Technol. Electron. Eng. 19, 27-39 (2018).

130.

131.

132.

134.

135.

136.

Page 26 of 26

Lundberg, S. M. & Lee, S. I A unified approach to interpreting model pre-
dictions. In Proc. 31st Conference on Neural Information Processing Systems
4765-4774 (Long Beach, CA, 2017).

Shrikumar, A, Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box:
learning important features through propagating activation differences. In
Proc. 33rd Int. Conference on Machine Learning (New York, NY, 2016).
Gawehn, E, Hiss, J. A. & Schneider, G. Deep learning in drug discovery. Mol.
Inform. 35, 3-14 (2016).

Jerez-Aragonés, J. M, Gdmez-Ruiz, J. A, Ramos-Jiménez, G, Munoz-Pérez, J. &
Alba-Conejo, E. A combined neural network and decision trees model for
prognosis of breast cancer relapse. Artif. Intell. Med. 27, 45-63 (2003).

Zhu, Y, Elemento, O, Pathak, J. & Wang, F. Drug knowledge bases and their
applications in biomedical informatics research. Brief. Bioinformatics 20,
1308-1321 (2018).

Su, C, Tong, J, Zhu, Y., Cui, P. & Wang, F. Network embedding in biomedical
data science. Brief. Bioinform. https//doi.org/10.1093/bib/bby117 (2018).
Bodenreider, O. The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32(suppl_1), D267-D270 (2004).
Szklarczyk, D. et al. STRING v10: protein—protein interaction networks, inte-
grated over the tree of life. Nucleic Acids Res. 43, D447-D452 (2014).


https://doi.org/10.1093/bib/bby117

	Deep learning in mental health outcome research: a scoping review
	Introduction
	Deep learning overview
	Deep feedforward neural network
	Recurrent neural network
	Convolutional neural network
	Autoencoder


	Methods
	Results
	Clinical data
	Neuroimages
	Challenges and opportunities
	Electroencephalogram data
	Challenges and opportunities
	Electronic health records
	Challenges and opportunities
	Genetic data
	Challenges and opportunities
	Vocal and visual expression data
	Challenges and opportunities
	Social media data
	Challenges and opportunities


	Discussion: findings, open issues, and future directions
	Principle findings
	Data bias
	Diagnosis and prediction issues
	Multimodal modeling
	Model interpretability
	Connection to therapeutic interventions
	Domain knowledge

	Conclusion
	Acknowledgements




